
Yalidating Software
Cuillaurne Brat, Klaus Havelund, SeungJoon Park,
Willern Visser

Software, particularly systems capable of autono-
mous operation, i s fast becoming a major enabling
technology at NASA. Unfortunately, the cost savings
of autonomous software systems can easily be offset
by the risk of in-flight failure of the software.
Although rigorous testing of software before deploy-
ment can increase the confidence of its correctness,
the tendency of in-flight software to be multi-
threaded makes it hard to find subtle errors caused by
the unforeseen interaction of concurrently executing
components. The Java PathFinder project developed
two versions of a tool that augments traditional
testing techniques in order to find subtle errors in
multi-threaded programs.

focus is on finding errors in programs written in Java,
but future work wil l also focus on C and C++ as well
as on design notations such as the Unified Modeling
Language (UML). Specifically, Java Pathfinder uses a
technique called model checking that allows all
possible executions of a Java program to be analyzed
in order to find errors. Typical errors being targeted
include deadlocks and mutual exclusion and asser-
tion violations.

The Java PathFinder project was initiated after a
practical experiment in 1997 in which part of the
Remote Agent, an artificial-intelligence-based
software component of the Deep Space 1 spacecraft,
was analyzed as an experiment. The analysis identi-
fied five classic multi-threading errors that had not
been caught by normal testing. One of these errors is
illustrated in the figure which describes a situation in
which two threads executing in parallel interact in an
unexpected manner. The analysis was done by hand
translating part of the Remote Agent code into the
language of an existing model-checking tool. This
was a time-consuming task. The first version of Java
PathFinder, JPF1, finished in August 1999, automated
this process by translating from Java to an existing
model checker. For the first time, JPF1 demonstrated
the feasibility of model-checking Java source code
directly without human interaction. JPF1 was applied

As can be deduced from the name, the current

to two software systems developed at NASA: a
satellite file exchange module developed at Goddard
Space Center, and a ground control module for the
Space Shuttle Launch facility at Kennedy Space
Center.

Although demonstrating feasi bi I ity, J PF1 had
some drawbacks. First, Java i s traditionally compiled
into byte code (a low-level machine-oriented lan-
guage) before execution, and libraries often come as
byte code rather than as source code. Hence, JPF1
could not handle libraries. Second, since SPIN was
used as the model checking engine, and since SPIN is
not easily modifiable, it was not possible to experi-
ment with alternative search strategies in order to
deal efficiently with large programs. Hence, a new
version of Java PathFinder, JPF2, was developed (in
Java), which model checks Java byte code directly.
Subsequently, advanced testing techniques have
been integrated into JPF2, which has been used to
find an intricate, but known, error in the real-time
operating system DEOS used by Honeywell in
business aircraft.

Thread 1 Thread 2

*Thread 1 tests condition and decides to do action
*Thread 2 makes condition false immediately thereafter
*Thread 1 now executes action assuming the condition

to be true

Fig. 1 . Error pattern found in remote agent.

Point of Contact: K. Havelund

haveIund@ptolerny.arc.nasa.gov
(650) 604-3366

REVOLUTIONARY TECHNOLOGY

